Dynamic Programming and Lagrange Multipliers.
نویسنده
چکیده
منابع مشابه
Boundedness of KKT Multipliers in fractional programming problem using convexificators
‎In this paper, using the idea of convexificators, we study boundedness and nonemptiness of Lagrange multipliers satisfying the first order necessary conditions. We consider a class of nons- mooth fractional programming problems with equality, inequality constraints and an arbitrary set constraint. Within this context, define generalized Mangasarian-Fromovitz constraint qualification and sh...
متن کاملLinear programming based decomposition methods for inventory distribution systems
We consider an inventory distribution system consisting of one warehouse and multiple retailers. The retailers face random demand and are supplied by the warehouse. The warehouse replenishes its stock from an external supplier. The objective is to minimize the total expected replenishment, holding and backlogging cost over a finite planning horizon. The problem can be formulated as a dynamic pr...
متن کاملDesign and Dynamic Modeling of Planar Parallel Micro-Positioning Platform Mechanism with Flexible Links Based on Euler Bernoulli Beam Theory
This paper presents the dynamic modeling and design of micro motion compliant parallel mechanism with flexible intermediate links and rigid moving platform. Modeling of mechanism is described with closed kinematic loops and the dynamic equations are derived using Lagrange multipliers and Kane’s methods. Euler-Bernoulli beam theory is considered for modeling the intermediate flexible link. Based...
متن کاملOptimal Control of Linear
The regularity of Lagrange multipliers for state-constrained optimal control problems belongs to the basic questions of control theory. Here, we investigate bottleneck problems arising from optimal control problems for PDEs with certain mixed control-state inequality constraints. We show how to obtain Lagrange multipliers in L p-spaces for linear problems and give an application to linear parab...
متن کاملLagrange multipliers theorem and saddle point optimality criteria in mathematical programming
We prove a version of Lagrange multipliers theorem for nonsmooth functionals defined on normed spaces. Applying these results, we extend some results about saddle point optimality criteria in mathematical programming. © 2005 Elsevier Inc. All rights reserved.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 42 10 شماره
صفحات -
تاریخ انتشار 1956